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SUMMARY

A series of spatially developing mixing layers are simulated using the large eddy simulation (LES)
technique. A hyperbolic tangent function and data derived from boundary layer simulations are used to
generate the inflow condition, and their effects on the flow are compared. The simulations are performed in
both two and three dimensions. In two-dimensional simulations, both types of inflow conditions produce a
layer that grows through successive pairings of Kelvin–Helmholtz (K–H) vortices, but the composition ratio
is lower for the hyperbolic tangent inflow simulations. The two-dimensional simulations do not undergo a
transition to turbulence. The three-dimensional simulations produce a transition to turbulence, and coherent
structures are found in the post-transition region of the flow. The composition ratio of the three-dimensional
layers is reduced in comparison to the counterpart two-dimensional runs. The mechanisms of growth are
investigated in each type of simulation, and amalgamative pairing interactions are found in the pre-transition
region of the three-dimensional simulations, and throughout the entire computational domain of those
carried out in two-dimensions. The structures beyond the post-transition region of the three-dimensional
simulations appear to behave in a much different manner to their pre-transition cousins, with no pairing-
type interactions observed in the turbulent flow. In order to accurately simulate spatially developing mixing
layers, it is postulated that the inflow conditions must closely correspond to the conditions present in the
reference experiment. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The mixing layer that forms between merging fluid streams of differing velocity (and densities)
is often regarded as the simplest form of free shear flow. Given this stature, it is somewhat sur-
prising to note that there are still several questions that remain unanswered about its evolutionary
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nature—most notably the effects of inflow conditions upon the growth rate of the layer [1–4],
and the effects of the presence of quasi-two-dimensional coherent structures found in the turbulent
region of the flow [5–7].

The controlled environment that numerical simulations offer should provide some of the answers
to the above issues. However, the overall topic of numerical research into mixing layer flows is
somewhat confused by a number of problems. Firstly, there exist two distinct methods of simulating
the mixing layer flow—temporally evolving and spatially developing simulations. In temporally
evolving simulations, the flow develops in time within the computational domain, allowing the
imposition of periodic boundary conditions in the stream- and spanwise directions, resulting in
a very low computational cost [8]. This type of simulation technique has long been thought to
produce flow patterns that provide quantitative comparisons with experiment. The formation of
Kelvin–Helmholtz rollers [9], the development of the secondary streamwise instability [10, 11],
and the interactions between the structures that eventually produce the transition to turbulence [12]
have all been captured in temporal simulations. However, Taylor’s hypothesis does not allow the
transformation of time onto a spatial domain for such flows, as shown by Lebœuf and Metha [13].
They demonstrated that the spanwise and streamwise vorticity decay with streamwise distance,
thus basing transforms on Taylor’s hypothesis results in errors of ∼20–40%, far greater than
previous estimates of ∼15%. The viability of temporal mixing layer simulations is also hindered
by the symmetric entrainment of fluid from both sides of the layer, in contradiction to what is
found experimentally [7]. In addition, the development of the temporally evolving layer is only
influenced by the initial conditions and previous flow development—in the real mixing layer, the
flow is influenced by events taking place downstream, in the form of low-frequency feedback. In
order to capture these properties of the mixing layer, therefore, spatially developing simulations (in
which the flow develops with downstream distance) must be conducted. Whilst spatially developing
mixing layer simulations should offer a direct comparison with experimental work, the requirement
of specifying a non-reflective boundary condition at the outflow plane of the domain greatly adds
to the computational cost of the simulation. Past research into the numerical simulation of spatially
developing mixing layers is very sparse, with most of the work focusing on validating numerical
schemes [14–16]. To the authors’ knowledge, only one study has focused on proving the large
eddy simulation (LES) methodology for use in simulating fully three-dimensional mixing layers
that undergo transition to turbulence [17].

Secondly, there is no particular consensus that defines the best inflow condition with which
the mixing layer flow simulation should be initialized. Analytical hyperbolic tangent profiles
[14, 18, 19], time-dependent inflow data from precursor boundary layer (BL) simulations [20],
and analytical BL profiles [16, 21] have all been used to describe the initial condition of the flow
in both direct numerical simulation (DNS) and LES, with each study giving reasonably good com-
parisons with their respective reference experiments. Mixing layer flows, however, are known to
exhibit a hypersensitivity to their initial conditions [3, 22], and it is reasonable to assume that the
simulated mixing layer will also display this behaviour. Balaras et al. [23] have shown that the
evolution of temporal mixing layers is significantly affected by the nature of the inflow condition,
whilst Tenaud et al. [16] demonstrated that the use of an analytical Whitfield profile [24] to describe
a turbulent inflow condition required large freestream disturbance values to produce a growth rate
in the layer that was comparable to experiment. For mixing layers that initiate from laminar condi-
tions, there has been no direct comparison on the effects of using a hyperbolic tangent or boundary
layer profile to describe the inflow condition of the layer. A series of simulations performed by
Vreman et al. [19], demonstrated the viability of hyperbolic tangent inflow conditions for a low
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Reynolds number temporal mixing layer flow, initiated from laminar conditions, in comparison
with a reference DNS. It should be noted, however, that only a hyperbolic tangent inflow profile
was used in the reference DNS, whilst no effort was apparently made to quantify the effects of a
BL-type inflow condition on the flow.

Thirdly, there is a common theme apparent in spatially developing simulations, with many
researchers believing that two-dimensional simulations of the mixing layer flow yield results that are
quantitatively comparable with experiment. Since the discovery of quasi-two-dimensional coherent
structures in the turbulent flow, it has been thought that the growth of the mixing layer is dominated
by two-dimensional processes, hence two-dimensional simulations should be able to capture the
physics of the flow. Indeed, the mixing layer is often categorized as an example of the so-called two-
dimensional turbulence [25]. Several publications conclude that such two-dimensional simulations
accurately capture the dynamics of the flow in regions that are far downstream of where the
transition to turbulence occurred in their reference experiments [14, 15, 21, 26–29]. All of the
results presented in these publications show discrepancies with the real flow, implying that some
differences may exist between the evolution of the flow in the simulation and in the experiment.

The present study focuses on assessing the performance of two of the inflow conditions described
above—a hyperbolic tangent function, and time-dependent inflow data obtained from precursor BL
simulations. Details of these inflow conditions will be given in Section 3. In addition, both two-
and three-dimensional simulations of the mixing layer will be performed in order to quantify
the effects of confining the flow to only two dimensions, and test the validity of claims that such
simulations accurately represent the real flow. The simulations correspond to experiments performed
by D’Ovidio [30], for several values of the velocity parameter �, defined as

� = U1 −U2

U1 +U2
(1)

where U1 and U2 are the freestream velocities on the high- and low-speed side of the layer,
respectively.

2. NUMERICAL METHODS

The spatially filtered analytic equations for conservation of momentum and mass for a uniform
density fluid are:

�ūi
�t

=− � p̄
�xi

+ �
�x j

(−ūi ū j + 2�S̄i j ) (2)

S̄i j = 1

2

(
�ūi
�x j

+ �ū j

�xi

)
(3)

�ūi
�xi

= 0 (4)

These equations are discretized on a staggered mesh as per Roache [31]. The viscosity � can consists
of both a molecular and a subgrid component, � = �m + �sg, if a subgrid-scale model is used. The
governing equations are advanced in time using the Adams–Bashforth technique, accurate to
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second order
ū∗
i = ūni + �t ( 32H

n
i − 1

2H
n−1
i ) (5)

with

Hi = �
�x j

(−ūi ū j + 2�S̄i j ) (6)

The provisional velocity ū∗
i does not obey continuity and is updated to the actual velocity at the

next time step, ūn+1
i , by the pressure solver. The pressure field is solved implicitly by the use of

the continuity equation. The provisional velocity field of ū∗
i is used to derive the actual velocity

by including the gradient of an unknown pressure field p̄n+1/2, such that

ūn+1
i = ū∗

i − �t
� p̄n+1/2

�xi
(7)

As the new velocity field must have zero divergence, a Poisson equation can be found for the
pressure field between the present and next time step

∇2 p̄n+1/2 = 1

�t

�ū∗
i

�xi
≡ R (8)

As the current code requires that one spatial dimension be periodic, a Fourier transform can be
performed on Equation (8) to give a sequence of Helmholtz problems for each wave number kz

�2 p̃
�x2

+ �2 p̃
�y2

− k2z p̃= R̃ (9)

The Fourier transform is performed in one direction and is then iterated by a novel multigrid
method for the other two directions to maximize the speed of convergence.

A passive scalar is also introduced into the flow domain, which is governed by the equation

�T̄
�t

= �
�xi

(
−ūi T̄ + �

�T̄
�xi

)
(10)

where � is the diffusivity, which can contain both a molecular and a subgrid component, � = �m+�sg,
if a subgrid-scale model is used. With a subgrid-scale model employed, the subgrid diffusivity is
set to �sg = �sg/0.3. The scalar is discretized on the staggered mesh at the cell centre, and a second-
order upwinding scheme is used to calculate the scalar flux between cell faces, following the work
of Gao and Voke [32]—this is found to reduce overshoots in the scalar field to less than 5%. The
Adams–Bashforth method is used to integrate the scalar field forward in time, with a method of
discretization very similar to Equations (5)–(6).

3. FLOW SIMULATIONS

The simulations presented here are based on the experimental work of D’Ovidio [30]. Several
mixing layer flows of differing �were studied, and these are reproduced in the numerical simulations
presented here. The simulations themselves are separated into two categories—two-dimensional
and three-dimensional simulations. Within these two simulation types, there are two further sub-
categories—simulations conducted with a hyperbolic tangent function specified as the inflow
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Figure 1. Schematic diagram of inflow profiles used for the present simulations: (a) hyperbolic tangent
function and (b) boundary layer profiles.

condition, given by the equation

ū(y)= U1 +U2

2
+ U1 −U2

2
tanh

(
2y

�i

)
(11)

where �i is the initial vorticity thickness of the layer, and simulations where the inflow condition
is derived from precursor two-dimensional BL simulations. The BL simulations are conducted on
a computational grid of 0.3× 0.038m, with 128× 64 cells used. The Smagorinsky subgrid-scale
model, with Cs = 0.1 was used in these runs, in conjunction with a van Driest damping function
to produce the correct near-wall eddy viscosity behaviour. In these BL runs, a slicing plane is
chosen at the position where the momentum thickness of the boundary layer matches that reported
in the experiment, and data are recorded at every time step at this plane. These slicing plane data
are then interpolated onto the mixing layer mesh in a manner that strictly conserves mass flux.
A schematic view of both types of inflow profile is shown in Figure 1. Due to the number of
simulations conducted, they are named according to their defining properties, i.e. F58-BL-CS-3D
is a simulation of Case F58, using BL inflow data, and simulated in three dimensions. Other
simulations with the suffix HT denote simulations with a hyperbolic tangent inflow condition. The
letters CS state that the subgrid-scale model used follows that of Smagorinsky [33], such that

�sg = (Cs�̄)2|S̄| (12)

where |S̄| = (2Si j Si j )1/2, Si j is the filtered strain-rate tensor, Cs is the Smagorinsky coefficient, and
�̄ is the cut-off length. The evolution of the flow has been shown to be largely unaffected by the use
of the Smagorinsky [33], Germano et al. [34], and Lilly [35], or structure function model [36] on
the current mesh [37], hence the Smagorinsky model is used here for reasons of low computational
cost. The parameter Cs is given a value of 0.12 in all simulations.
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Table I. Flow parameters of the mixing layers simulated.

Experiment number U1 (m s−1) U2 (m s−1) � �t (�s)

F9 31.39 12.96 0.42 1.2
F33 28.46 9.68 0.49 1.5
F58 19.93 6.81 0.49 1.6
HW9 32.12 9.59 0.54 1.2
FP42 21.58 5.19 0.61 1.6

In the three-dimensional simulations, the mesh used incorporates 256× 96× 64 cells, with the
domain size set to 0.16× 0.038× 0.03m. The mesh is stretched gently in the x- and y-directions
in order to allow increased resolution in the plane of the splitter plate, although the splitter plate
itself does not extend into the computational domain, as this would require the use of an internal
wall boundary condition. The two-dimensional simulations use one cell in the spanwise domain,
in order to force two-dimensionality onto the flow.

Several mixing layer flows are simulated, and their bulk properties are summarized in Table I,
including the time step of each simulation. Each simulation is run for 120000�t , with the time steps
varying between simulations. This is due to the requirement that the CFL number [38], given by

C = �t

(
ū

�x
+ v̄

�y
+ w̄

�z

)
(13)

be kept below the stability limit. In all simulations, the maximum reported CFL number does not
exceed 0.25. The two- and three-dimensional simulations of each case use the same time step, as
approximately 60% of the CFL value comes from the cross-stream component v̄/�y. The passive
scalar is injected into the flow at the inflow plane and is given a value of ‘0’ on the low-speed
side, and ‘1’ on the high-speed side of the layer. In all simulations, the lateral boundaries are of an
impermeable free-slip nature, and the spanwise boundaries are necessarily periodic. The outflow
condition is of an advective form, given by the equation

�ūx
�t

= −Uc
�ūx
�x

(14)

where the derivative �ūx/�x is necessarily one-sided, and Uc is the mean streamwise velocity at
the outflow plane. In order to conserve mass flux through the computational domain and retain the
stability of the pressure solver, the mass flux at the outflow is compared with that of the inflow at
each time step. If the two values are not equal the outflow velocity is normalized by the ratio of the
inflow to outflow mass fluxes. The outflow boundary condition of the passive scalar is also treated
in a very similar manner to that of the velocity field.

4. RESULTS

4.1. Two-dimensional simulations

The mean flow properties of the mixing layer are presented in a self-similar co-ordinate system, �,
defined by

� = (y − y0.5)

(x − x0)
(15)
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Figure 2. Mean and RMS fluctuation velocity profiles for cases HW9-BL-CS-2D and HW9-BL-CS-3D.

where y0.5 is the lateral position where the streamwise velocity is equal to the mean of the freestream
velocities, Ua = (U1 +U2)/2, and x0 is the virtual origin of the mixing layer.

Typical mean and root mean squared (RMS) velocity and scalar field profiles for the two-
dimensional simulations are shown in Figures 2 and 3, taken from case HW9-BL-CS-2D.
Experimental profiles are also shown for the properties where these data are available. The mean
streamwise velocity profiles agree well with the experiment, and the streamwise velocity fluctua-
tions do not exhibit particularly good self-similar properties, as the profiles do not collapse onto
a single line. This phenomenon is commonly found in two-dimensional mixing layer simulations
[14, 39]. The mean scalar and RMS scalar fluctuation profiles bear a good resemblance to those
produced by Zhou and Pereira [21], with the kink in the mean scalar profile, and the bimodal
distribution of the fluctuation profile being characteristic of the two-dimensional, unsteady
laminar flow.
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Figure 3. Mean and RMS fluctuation scalar profiles for cases HW9-BL-CS-2D and HW9-BL-CS-3D.

Figure 4. Vorticity thickness variation of two-dimensional HW9 simulations.

Figure 4 shows the vorticity thickness of the two-dimensional mixing layer, using both types
of inflow condition. The growth of the layer is largely the same for both inflow conditions, and
in Figure 5 the growth rate of the layer can be seen to increase with �, in agreement with other
numerical and experimental results [5, 27]. Similar vorticity thickness variations are found for the
BL inflow simulations. These growth rates are not compared with the reference experiment data,
as the streamwise extent of the computational domain is insufficient to satisfy the 1000�m criterion
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Figure 5. Vorticity thickness variation of the two-dimensional boundary layer inflow condition simulations.

for the flow to attain self-similarity, where �m is the momentum thickness of the high-speed side
boundary layer. In addition, measurements of the thickness of the layer in the experiment began
downstream of the streamwise extent of the current computational domain. On the basis of these
mean flow statistics, it is straightforward to understand how some researchers have suggested that
a two-dimensional simulation of a mixing layer using a hyperbolic tangent inflow condition is
sufficient to produce quantitative comparisons to experiment [14, 26, 27].

Figure 6 shows a typical instantaneous output from the two-dimensional simulations. Initially, it
appears that both simulations are very similar in appearance, with the initial K–H roll-up forming,
and the layer growing through successive pairings caused by the growth of the subharmonics of
the fundamental instability. Closer inspection, however, reveals a subtle difference between the
two simulations—in the BL inflow case the primary K–H rollers show a large excess of fluid
that has originated from the high-speed side. The vortices present in the hyperbolic tangent inflow
simulation do not have this excess in the primary rollers, and it appears that the fluid contained
within these cores lies in the mid-range of values allowed in the scalar field. Qualitatively, this
shows a marked difference in the initial evolution of the layer between the inflow types.

In order to quantify this apparent difference in the make-up of the vortices present in the layer,
an expression can be defined to obtain the mean volume fraction of high-speed side fluid contained
within the mixing layer. This is given by

Vh = 1

|�h − �l|
∫ �h

�l
T (�) d� (16)

where � is the normalized self-similar co-ordinate system, and �h and �l are the mean ‘boundaries’
of the mixing layer, where the scalar T has a value of 0.99 and 0.01, respectively. A similar
expression can be obtained for the volume fraction of fluid, Vl, that originated from the low-speed
side stream. These values can be used to calculate the composition ratio of the layer, which is
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Figure 6. Typical spanwise-averaged scalar fields in cases: (a) F33-HT-CS-2D and (b) F33-BL-CS-2D.

Table II. Composition ratio values of the two-dimensional
simulations at x = 0.13m.

Simulation � Ev

F9-HT-CS-2D 0.42 1.27
F9-BL-CS-2D 0.42 1.55
F33-HT-CS-2D 0.49 1.43
F33-BL-CS-2D 0.49 1.58
F58-HT-CS-2D 0.49 1.25
F58-BL-CS-2D 0.49 1.68
HW9-HT-CS-2D 0.54 1.36
HW9-BL-CS-2D 0.54 1.64
FP42-HT-CS-2D 0.61 1.52
FP42-BL-CS-2D 0.61 1.69

defined as

Ev = Vh
Vl

(17)

Table II shows the composition ratios for each of the two-dimensional simulations conducted at
x = 0.13m. The data show that the composition ratio of the BL inflow simulations is significantly
higher than for the counterpart hyperbolic tangent simulations, confirming the qualitative observa-
tion above. Both types of simulation to show a composition ratio of greater than one, implying that
the layer entrains more fluid from the high-speed side.
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Figure 7. Particle distributions for: (a) F9-HT-CS-2D and (b) F9-BL-CS-2D.

In order to study the effect that the inflow condition has on the initial evolution of the mixing
layer, massless tracer particles are injected into the flow at the inflow plane. The particles are
injected into the layer in such a way that their number density is equal in both free streams. As the
particles are massless, their motion is governed by the equation

xp =
∫ t+�t

t
Up dt (18)

Figure 7 shows a typical instantaneous particle distribution field for the two-dimensional simula-
tions. Again, they are qualitatively similar, with the familiar ‘swiss-roll’ pattern indicating that fluid
is entrained into the layer by the pairing process. However, a close-up of the first few centimetres
of this image in Figure 8 illustrates that the initial behaviour of the layer is markedly different in
each simulation. In the hyperbolic tangent case, all the particles near the centreline of the layer
convect downstream with a velocity of approximately that of the mean convection velocity Ua . The
streamwise velocity at the inflow plane in the BL inflow simulations, however, is near-zero due to
the no-slip boundary conditions applied in the precursor boundary layer simulations. This means
that there is a small, wake-like region just downstream of the inflow plane, where the two streams
merge and form the inflectional velocity profile required for the layer to roll up into K–H vortices.
For such an inflow condition, the instability develops before the boundary layers have fully merged,
and subsequently a parallel shear layer is not established. It is known that the high-speed boundary
layer contains most of the vorticity initially present within the real flow [40], as the vorticity in
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Figure 8. Close-up view of particle distributions in the wake region
for: (a) F9-HT-CS-2D and (b) F9-BL-CS-2D.

the low-speed boundary layer is rapidly cancelled by the vorticity of the opposite hand from the
high-speed side fluid. This results in the inflection point in the velocity profile being established in
the high-speed side of the fluid, giving the large excess of fluid found in the primary K–H roll-up.

Inspection of Equation (11) reveals that the hyperbolic tangent profile used in these simulations
is symmetric in nature, and as such the initial circulation that it provides, will be focused on the
centreline of the layer, and as a consequence, at the scalar interface between the two streams. This
will result in fluid being drawn roughly equally from both streams into the initial K–H roll-up, and
therefore produce the large discrepancy in the composition of the primary vortex formed in the
layer, when compared to the BL inflow simulations.

It should be noted that the merging of the boundary layers only influences the composition
of the fluid within the initial roll-up and does not affect the entrainment of fluid during pairing
interactions as the flow progresses downstream. For example, the composition ratio at x = 0.03m in
case F33-BL-CS-2D is 3.55, whilst case F33-HT-CS-2D has a value of 1.11 at the same location.
Comparison with the values recorded at x = 0.13m in Table II reveals that the discrepancy is
not as large, highlighting two issues. Firstly, as the flow develops, the fluid entrained during the
roll-up process in the BL inflow simulations is diluted as pairing interactions entrain fluid from
the free streams. Secondly, the entrainment of fluid from the free streams is biased towards the
high-speed fluid, and given a sufficiently long computational domain, the composition ratio of the
layer produced by both inflow conditions will relax to the value of the entrainment ratio between
the free streams.
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Clearly, this discrepancy in the composition ratio of the layer has wide-ranging effects on the
numerical simulation of the mixing layer flow, particularly in terms of chemically reacting and
combusting shear layers, where the reaction rate and combustion sustainability is determined by
the composition of the fluid within the structures.

4.2. Three-dimensional simulations

The above simulations are repeated with the addition of the spanwise domain, which permits the
extra degree of freedom that is found in the real flow. Typical mean and RMS flow quantities are
presented in Figures 2 and 3, along with the data from its two-dimensional counterpart simulation.
The mean streamwise velocity profile again agrees well with the experimental data, and the RMS
streamwise velocity fluctuations produce a much better comparison to experiment. The cross-stream
fluctuations have a peak magnitude that is significantly lower than the counterpart two-dimensional
simulations, and this is due to the presence of the spanwise dimension, and the subsequent transfer
of energy into the turbulent fluctuations in this flow direction. The kink in the mean scalar profile is
much less pronounced in the three-dimensional simulations, and it, along with the bimodal profile
of the RMS of the scalar fluctuation, disappears with downstream distance in the three-dimensional
simulations, as shown in Figure 3. The change in the scalar profiles is due to the transition to
turbulence in the mixing layer flow. The transition is triggered by the three-dimensional interaction
between the primary vortices and the secondary streamwise structures during a pairing of the
former, and its mean transition location has been considered in detail elsewhere [37, 41]. The
vorticity thickness variations of cases F9-BL-CS-3D, HW9-BL-CS-3D, and their counterpart two-
dimensional simulations are shown in Figure 9, with the three-dimensional flows growing much
more quickly than when the flow is confined to two dimensions.

Figure 9. Vorticity thickness of F9-BL-CS-3D, HW9-BL-CS-3D, and their
two-dimensional counterpart simulations.
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Figure 10. Comparison of spanwise-averaged scalar fields between:
(a) F33-HT-CS-2D and (b) F33-HT-CS-3D.

The scalar images taken from the three-dimensional simulations are spanwise-averaged, in order
to give a reasonable, yet not direct comparison to the schlieren and shadowgraph images found in
some experimental work [5, 30, 42]. Such a flow field is presented in Figure 10 from case F33-
HT-CS-3D along with a similar image from case F33-HT-CS-2D. The most striking difference
between the two fields is that the structures in the three-dimensional simulation appear markedly
different in form to those in the two-dimensional system, downstream of x = 0.07m. The reasons
for this visual difference are twofold; firstly, the spanwise-averaging procedure tends to ‘smooth
out’ the variations in the scalar within the structures, resulting in the relatively uniform scalar
distribution present within the large-scale structures. Secondly, the flow in the three-dimensional
simulation has undergone a transition to turbulence, resulting in a change in the distribution of
vorticity within the structure. In the pre-transition flow, as in the two-dimensional simulations, the
vorticity in each of the large vortices remains concentrated in a relatively compact core, whilst
post-transition, the vorticity is much more evenly distributed throughout the coherent vortex. This
change in the vorticity distribution implies that the post-transition structures contain fluid that is
much more uniformly mixed. The presence of secondary streamwise vortices is required for the
layer to undergo transition to turbulence [43], and as the two-dimensional simulations are incapable
of capturing this phenomena, the flow in such runs does not undergo a transition to turbulence,
instead remaining in an unsteady yet laminar state.

The composition ratio at x = 0.13m in each of the simulations is shown in Table III, along with
the mean transition location of the flow, xt . This transition location was calculated by two means—
firstly, frequency spectra were recorded at several streamwise locations, and the position where
the roll-off in the spectra approached − 5

3 was noted. Secondly, sequences of flow outputs, such as
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Table III. Composition ratio values of the three-dimensional simulations at
x = 0.13m, with the mean transition location of the flow.

Simulation � Ev xt

F9-HT-CS-3D 0.42 0.97 0.065
F9-BL-CS-3D 0.42 1.27 0.068
F33-HT-CS-3D 0.49 1.03 0.07
F33-BL-CS-3D 0.49 1.35 0.071
F58-HT-CS-3D 0.49 1.03 0.082
F58-BL-CS-3D 0.49 1.33 0.085
HW9-HT-CS-3D 0.54 0.98 0.062
HW9-BL-CS-3D 0.54 1.26 0.065
FP42-HT-CS-3D 0.61 0.99 0.076
FP42-BL-CS-3D 0.61 1.34 0.08

Figure 11. Time trace through x = 0.05m in case F58-BL-CS-2D.

vorticity and scalar fields were recorded at intervals of 100�t , and the positions of the interactions
that precipitated the transition to turbulence were recorded. These data were then combined to
arrive at the values in Table III. Surprisingly, a three-dimensional simulation using a hyperbolic
tangent inflow condition produces a post-transition composition ratio that is approximately equal to
one. This infers that the mixing layer entrains equal amounts of fluid that originated from both free
streams, in complete contradiction to the experimental work of Konrad [6] and Koochesfahani and
Dimotakis [7]. The BL inflow case, however, produces a composition ratio that compares muchmore
favourably with the data from those two experiments. Interestingly, the composition ratios of the
two-dimensional simulations initialized from a hyperbolic tangent function are very close to those
found in three-dimensional simulations initiated by a BL inflow condition. This close relationship
is entirely coincidental, as the unrealistically low initial entrainment in the former case is offset by
more rapid flow development upstream of the sampling station. This flow development continues
throughout the flow and results in higher compositions found downstream of the sampling station.
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Figure 12. Typical pairing interaction of vortices in the two-dimensional simulations.

The three-dimensional simulations with BL inflow do not show this behaviour, with the composition
ratio of simulations of this type remaining roughly constant downstream of the sampling station.

4.3. Mechanisms of growth

The majority of past research into the mixing layer flow has shown that the growth of the layer
is dominated by the interactions between the primary spanwise vortices present in the flow. The
interactions that occur between both the pre-transition vortices, and the coherent structures in the
turbulent region of the flow are widely believed to take the form of vortex pairing found in exper-
imental [44] and numerical research [14, 29, 45]. In Figures 10(a) and (b), it is obvious that the
number density of the vortices in the flow decreases with downstream distance from the inflow
plane, suggesting that interactions are taking place to achieve this. The presence of large vortices
beyond the transition location in Figure 10(a) (beyond x = 0.07m in this case) is indicated by
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the clustering of the scalar lines in the braid region between the structures, and the ‘bumps’ on
the edges of the layer where these braids wrap themselves around the cores of the structures.
Sequences of scalar images stored from the simulations at intervals of 100�t are analysed to eluci-
date the types of interactions that take place between the structures. Time traces—where the flow
passing through a streamwise control plane is recorded over a long time period—are also used
to aid in this process. This time trace method is a two-dimensional analogy of the work of
Jimenez et al. [46].

4.3.1. Two-dimensional simulations. A time trace of the flow passing through x = 0.05m of case
F58-BL-CS-2D is shown in Figure 11. The time axis of the time trace images is reversed so
that the structures have the same orientation as the instantaneous spatial images. The vortices in
the flow passing through this control plane are quite clearly displacing laterally within the layer,
in order to undergo a process of amalgamation-by-pairing. A typical interaction of this type is
shown in Figure 12. In Figure 12(a), the two vortices are shown to be in roughly the same lateral
location in the layer. In Figures 12(b) and (c), the upstream vortex rotates over the top of the
downstream structure, and the lateral displacement of the vortices entrains fluid from the free
streams. In Figure 12(d), the amalgamation of the vortices is complete, and produces the increase
in the visual thickness of the layer. Pairing interactions of this type are brought about due to growth
of a subharmonic of the fundamental instability, and the interaction process seen in the simulations
is entirely consistent with those noted elsewhere [44]. Amalgamative pairings of this form are
evident throughout the computational domain of the two-dimensional simulations, regardless of
the type of inflow condition used to initiate the layer, and the principal mechanism of growth in
the two-dimensional mixing layer simulation is through these pairing interactions.

4.3.2. Three-dimensional simulations. A typical time trace of the flow in the pre-transition region
of the three-dimensional mixing layer simulations is shown in Figure 13, recorded at x = 0.05m

Figure 13. Time trace through x = 0.05m in case FP42-BL-CS-3D.
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Figure 14. Sequence of images demonstrating the interactions that occur between pre-transition
vortices in the three-dimensional mixing layer.

from case FP42-BL-CS-3D. The procedure of spanwise-averaging the passive scalar removes much
the definition of the individual vortices, although evidence of lateral displacement of vortices within
the layer is apparent. The nature of the interactions between vortices in this region of the flow is
very similar to that found in the two-dimensional flow (Figure 12), with the vortices rotating
around each other and amalgamating, causing an increase in the visual thickness of the layer. The
interactions that occur between the vortices can also involve three separate structures—a process
that is known as a tripling interaction. Figure 14 shows a sequence of images capturing such
an event. In Figure 14(a), the structures marked with dashed arrows are undergoing a normal
amalgamation-by-pairing event, similar to that presented in Figure 12. The three upstream vortices,
marked with the solid arrows, also begin to interact in a similar manner. In Figure 14(b), the three
vortices are amalgamating to form a new structure, with the two furthest upstream of the three
vortices rotating over its downstream neighbour. The interaction is completed in image (c), with a

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 55:589–610
DOI: 10.1002/fld



INFLOW CONDITIONS FOR SPATIALLY DEVELOPING MIXING LAYERS 607

Figure 15. Time trace through x = 0.13m in case F9-BL-CS-3D.

new large-scale turbulent structure formed. Analysis of sequences of the spanwise-averaged scalar
field suggests that there is no hierarchical ordering to these interactions. Both the pairing and
tripling interactions highlighted in Figure 14 trigger the transition to turbulence within the flow, in
agreement with other experimental and numerical research [43, 45].

Beyond the mixing transition, the process by which the coherent structures interact is not quite so
clear. A time trace was recorded at a streamwise location of x = 0.13m from cases F9-BL-CS-3D
and is shown in Figure 15. The structures, separated by braid regions where the scalar filed lines
are angled at 45 degrees to the flow, do not appear to rotate around each other in order to undergo
amalgamation-by-pairing-type interactions. Similar time traces are obtained in the post-transition
region of all the three-dimensional simulations conducted here, and no pairing interactions that are
symptomatic of the type shown in Figure 12 are obvious beyond the mixing transition. The data
presented here suggest that not only does the mixing transition in the mixing layer bring about
a change in the pattern and extent of molecular-scale mixing in the flow [6, 7], but it also brings
about a change in the growth mechanism of the layer. The large-scale structure marked with the
dashed arrow in (b) and (c) of Figure 14 and its downstream neighbour demonstrate this as these
structures appear to remain in a fixed lateral position as they travel downstream, growing in size
in a continuous manner. This type of continuous growth has been noted previously by Hernan
and Jimenez [47], who determined that much of the growth of the layer was associated with the
continuous growth of the individual structures. The present simulations are consistent with this
experimental evidence and, more particularly, with the results of more recent experiments which
have indicated that the pairing-driven and continuous growth mechanisms are characteristic of the
pre- and post-transition flows, respectively [30, 48].

5. CONCLUSIONS

Simulations of spatially developing mixing layers have been conducted, using two separate inflow
conditions, and in both two and three dimensions. The effects of the inflow condition on the layer

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 55:589–610
DOI: 10.1002/fld



608 W. A. McMULLAN, S. GAO AND C. M. COATS

are analysed, along with the mechanisms of growth that govern both the two- and three-dimensional
mixing layers.

A large difference between the composition of two-dimensional mixing layers that are initialized
by either a hyperbolic tangent function or precursor boundary layer inflow data has been noted.
Mixing layers produced by a boundary layer inflow condition have composition ratios that are
much higher than those found in layers initialized by a hyperbolic tangent function, and this is
due to the positioning of the circulation present in the layer with respect to the interface of the
scalar within the flow. Both sets of two-dimensional simulations entrain fluid preferentially from
the high-speed side stream of the flow.

The contrast in the properties of two- and three-dimensional mixing layers is assessed. In the two-
dimensional simulations a transition to turbulence is not captured, leading to the comparatively poor
self-similar flow characteristics reported here, when compared with counterpart three-dimensional
runs. As a result, the two-dimensional simulations should be considered to be in an unsteady
laminar state. The transition to turbulence is captured in the three-dimensional simulation, and
large-scale coherent structures are found in the post-transition region of the flow. The structures
are composed of fluid that is much more thoroughly mixed than at the same streamwise locations
in the two-dimensional simulations. The composition ratio of the three-dimensional layers is much
different to their two-dimensional counterparts, with the hyperbolic tangent inflow cases yielding
a composition ratio of unity, contradicting previous experimental evidence. Three-dimensional
simulations conducted with boundary layer inflow data produce composition ratios that agree
favourably with experiment, as more fluid is entrained from the high-speed side fluid.

The above points demonstrate that two-dimensional simulations are wholly insufficient to provide
an accurate description of the real mixing layer flow. This and the unrealistic composition ratio of
the three-dimensional mixing layer initialized from a hyperbolic tangent function have significant
impact on the modelling of chemically reacting and combusting flows, and indicate that in order
to successfully replicate the behaviour of the real flow, the initial conditions of the flow must
be matched as closely as possible to that of the experiment, otherwise inaccurate results will be
obtained.

The mechanisms that drive the growth of the mixing layer are studied. The well-known growth
by amalgamative pairings of vortices drives the growth of the two-dimensional simulations and
also dominates the pre-transition region of the three-dimensional mixing layer flow. Beyond the
mixing transition the dominant mechanism of growth is not so obvious. Pairing interactions are
not observed, and the coherent structures embedded in the flow appear to grow in a continuous
manner. The mechanism of growth in the flow beyond the mixing transition is not determined, as
the streamwise extent of the computational domain is insufficient to gather detailed information on
this region of the flow. Details of this continuous growth beyond the mixing transition are beyond
the scope of this article, and will be examined elsewhere [49, 50].
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